SAFETY MODULES

E-Stop and Guard Monitoring Modules

E-Stop \& Guard Monitoring Modules

- Modules monitor external devices for contact failure or wiring faults.
- Module goes into lockout mode if fault is detected
- Available voltages include 24 V ac/dc; 24 V dc; 115 V ac or $12-24 \mathrm{~V} \mathrm{dc}$; or 230 V ac or $12-24 \mathrm{~V}$ dc.
- Modules serve to monitor positive-opening E-stop and interlocking switches.
- Ratings are NEMA 1 and at least IEC IP20.

E-Stop \& Guard Monitoring Modules

- Easy-to-see red and green LED status indicators
- Rugged polycarbonate housing

■ Plug-in or fixed terminal blocks

- Standard 35 mm DIN rail track mounting

ES-..A-5A Models
ES-FA-..AA \& GM-FA-10J Models

ES-TN-1H.. Models

112 More information online at bannerengineering.cqm

E-Stop \& Guard Monitoring Modules

Model	Functional Stop Category	Supply Voltage	Inputs	Safety Outputs	Output Rating	Aux. Outputs	$\begin{aligned} & \text { Output } \\ & \text { Response } \\ & \text { Time } \end{aligned}$	Delay	Data Sheet
GM-FA-10J	0	$24 \mathrm{Vac} / \mathrm{dc}$	$\begin{gathered} 1 \text { NC (single) } \\ \text { or } \\ 1 \text { NC \& } 1 \text { NO } \\ \text { (dual) } \end{gathered}$	2 NO	6 amps	-	35 ms	-	60998
ES-FA-9AA	0	24 V ac/dc	$\begin{gathered} 1 \text { NC (single) } \\ \text { or } \\ 2 \text { NC (dual) } \end{gathered}$	3 NO	6 amps	-	25 ms	-	60606
ES-FA-11AA				2 NO		1 NC			
ES-UA-5A	0	$\begin{gathered} 115 \mathrm{~V} \text { ac } \\ \& \\ 12-24 \mathrm{~V} \text { dc } \end{gathered}$	$\begin{gathered} 1 \text { NC (single) } \\ \text { or } \\ 2 \text { NC (dual) } \end{gathered}$	4 NO	6 amps	$\begin{gathered} 1 \text { NC } \\ \& \\ 2 \text { PNP } \end{gathered}$	25 ms	-	122365
ES-VA-5A		$\begin{gathered} 230 \mathrm{~V} \text { ac } \\ \& \\ 12-24 \mathrm{~V} \text { dc } \end{gathered}$							
ES-TN-1H5	0 \& 1	24 V dc	$\begin{gathered} 1 \text { NC (single) } \\ \text { or } \\ 2 \text { NC (dual) } \end{gathered}$	$\begin{gathered} 2 \text { NO } \\ \text { \& } \\ 2 \text { NO } \\ \text { w/delay } \end{gathered}$	4 amps	$\begin{gathered} 1 \mathrm{NC} \\ \text { (delayed) } \\ \& \\ 1 \mathrm{NC} \\ \text { (immediate) } \end{gathered}$	50 ms	0-20 sec.	58697
ES-TN-1H6								0-200 sec.	
ES-TN-1H1								0.25 sec .	61061
ES-TN-1H2								0.5 sec .	
ES-TN-1H3								1.0 sec .	
ES-TN-1H4								2.0 sec .	
ES-TN-1H7								4.0 sec.	
ES-TN-1H8								6.0 sec .	
ES-TN-1H9								8.0 sec .	
ES-TN-1H10								10.0 sec.	
ES-TN-1H11								15.0 sec.	
ES-TN-1H12								20.0 sec .	
ES-TN-14H5	0 \& 1	24 V dc	$\begin{aligned} & 1 \text { NC (single) } \\ & \text { or } \\ & 2 \text { NC (dual) } \end{aligned}$	$\begin{gathered} 4 \text { NO } \\ \text { \& } \\ 4 \text { NO } \\ \text { w/delay } \end{gathered}$	4 amps	$\begin{gathered} 1 \mathrm{NC} \\ \text { (delayed) } \\ \& \\ 1 \mathrm{NC} \\ \text { (immediate) } \end{gathered}$	50 ms	0-20 sec.	68436
ES-TN-14H6								0-200 sec.	
ES-FA-6G	0	$24 \mathrm{Vac} / \mathrm{dc}$	1 NC (single)	3 NO	6 amps	1 NC	35 ms	-	55581

SAFETY MODULES

GM-FA-10J Guard Monitoring Module Specifications

Supply Voltage and Current	$24 \mathrm{~V} \text { ac } / \mathrm{dc} \pm 20 \%$ Power consumption: approx. 3 VA / 3 W
Supply Protection Circuitry	Protected against transient voltages and reverse polarity
Output Configuration	Each normally open output channel is a series connection of contacts from two forced-guided (mechanically linked) relays, K1-K2. Contacts: AgNi, $5 \mu \mathrm{~m}$ gold-plated Low Current Rating: Caution: The $5 \mu \mathrm{~m}$ gold-plated contacts allow the switching of low current/low voltage. To preserve the gold plating on the contacts, do not exceed the following max. values at any time: Min. voltage: 1 V ac/dc Max. voltage: 60V Min. current: 5 mA ac/dc Max. current: 300 mA Min. power: $5 \mathrm{~mW}(5 \mathrm{mVA})$ Max. power: 7 W (7 VA) High Current Rating: If higher loads must be switched through one or more of the contacts, the minimum and maximum values of the contact(s) changes to: Min. voltage: 15 V ac/dc Max. voltage: 250V ac/dc Min. current: 30 mA ac/dc Max. current: 6 A Min. power: 5 W (5 VA) Max. power: 200 W (1,500 VA) Mechanical life: 50,000,000 operations Electrical life: 150,000 cycles typical, @ 200 W (1,500 VA) switched power, resistive load Note: Transient suppression is recommended when switching inductive loads. Install suppressors across load. Never install suppressors across output contacts.
Output Response Time	35 milliseconds
Input Requirements	Input switch must have a normally closed contact and a normally open contact capable of switching 5 to 50 mA @ 15 to 30 V dc. Reset switch must have one normally open contact capable of switching 5 to 50 mA @ 15 to 30 V dc . Max. external resistance between terminals S11/S12, S11/S13, S21/S22 and S21/S23: 270Ω each.
Simultaneity Monitoring	2-Channel operation: 3 seconds 1-Channel operation: infinite
Status Indicators	$\mathbf{4}$ green LEDs: $\mathbf{1}$ red LED: Power: power is supplied to Safety Module Fault Channel 1: inputs satisfied (guard closed) Channel 2: inputs satisfied (guard closed) Output: K1 and K2 energized, safety outputs closed
Construction	Polycarbonate housing
Environmental Rating	Rated NEMA 1; IEC IP40, Terminals IP20
Mounting	Mounts to standard 35 mm DIN rail track. Safety Module must be installed inside an enclosure rated NEMA 3 (IEC IP54), or better.
Vibration Resistance	10 to $55 \mathrm{~Hz} @ 0.35 \mathrm{~mm}$ displacement per IEC 68-2-6
Operating Conditions	Temperature: 0° to $+50^{\circ} \mathrm{C}$ Relative humidity: 90% @ $+50^{\circ} \mathrm{C}$ (non-condensing)
Safety Category	4 per ISO 13849-1 (EN954-1) (depending on application)
Certifications	For a list of certifications see page 237.
Wiring Diagrams	1-Channel Coded Magnet Switches: WD043 (p. 271) 2-Channel Positive Opening Switches: WD044 (p. 271) 1-Channel (Multiple Guards): WD045 (p. 272) 2-Channel (Multiple Guards): WD046 (p. 272) Guarded Machine: WD047 (p. 274)

ES-FA-..AA Safety Module Specifications

Supply Voltage and Current	$24 \mathrm{Vac} / \mathrm{dc},+/-10 \% ; 50 / 60 \mathrm{~Hz}$ Power consumption: approx. 2 W/2 VA
Supply Protection Circuitry	Protected against transient voltages and reverse polarity
Output Configuration	ES-FA-9AA: 3 normally open output channels ES-FA-11AA: 2 normally open output channels and 1 normally closed auxiliary output channel. Each normally open output channel is a series connection of contacts from two forced-guided (positiveguided) relays, K1-K2. The normally closed contact $31-32$ is a parallel connection of contacts from K1-K2. Contacts: AgNi, $5 \mu \mathrm{~m}$ gold-plated Low Current Rating: Caution: The $5 \mu \mathrm{~m}$ gold-plated contacts allow the switching of low current/low voltage. To preserve the gold plating on the contacts, the following max. values should not be exceeded at any time: Min. voltage: 1V ac/dc Max. voltage: 60V Min. current: 5 mA ac/dc Max. current: 300 mA Min. power: $5 \mathrm{~mW}(5 \mathrm{mVA})$ Max. power: 7 W (7 VA) High Current Rating: If higher loads must be switched through one or more of the contacts, the minimum and maximum values of the contact(s) changes to: Min. voltage: 15 V ac/dc Max. voltage: 250 V ac/dc Min. current: 30 mA ac/dc Max. current: 6 A (ES-FA-9AA) and 7A (ES-FA-11AA) Min. power: 5 W (5 VA) Max. power: 200 W (1,500 VA) Mechanical life: 50,000,000 operations Electrical life: ES-FA-9AA: 150,000 operations (typical, @ $200 \mathrm{~W}(1,500 \mathrm{VA})$ switched power, resistive load) ES-FA-11AA: 130,000 operations (typical, @ 200 W (1,750 VA) switched power, resistive load) Note: Transient suppression is recommended when switching inductive loads. Install suppressors across load. Never install suppressors across output contacts.
Output Response Time	25 milliseconds typical
Input Requirements	Input switch must have one or two normally closed contacts capable of switching 40 to $100 \mathrm{~mA} @ 13$ to $27 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$. Reset switch must have one normally open contact capable of switching 20 to $30 \mathrm{~mA} @ 13$ to $27 \mathrm{~V} \mathrm{ac} / \mathrm{dc}$.
Minimum OFF-State Recovery Time	250 milliseconds
Status Indicators	3 green LED indicators: Power ON K1 energized K2 energized
Construction	Polycarbonate housing
Environmental Rating	Rated NEMA 1; IEC IP40, Terminals IP20
Mounting	Mounts to standard 35 mm DIN rail track. Safety Module must be installed inside an enclosure rated NEMA 3 (IEC IP54), or better.
Vibration Resistance	10 to 55 Hz @ 0.35 mm displacement per IEC 68-2-6
Operating Conditions	Temperature: 0° to $+50^{\circ} \mathrm{C}$ Relative humidity: 90% @ $+50^{\circ} \mathrm{C}$ (non-condensing)
Certifications	For a list of certifications see page 237.
Wiring Diagrams	1-Channel: WD048 (p. 275) 2-Channel: WD049 (p. 276)

SAFETY MODULES
E-Stop and Guard Monitoring Modules

ES-..A-5A Safety Module Specifications

	Supply Voltage and Current	ES-UA-5A: 115V ac (A1-A2), $12-24 \mathrm{~V} \mathrm{dc}, \pm 15 \%, 10 \%$ max. ripple (B1-B2) ES-VA-5A: 230V ac (A1-A2), $12-24 \mathrm{~V}$ dc, $\pm 15 \%, 10 \%$ max. ripple (B1-B2) Power consumption: approx. $7 \mathrm{VA} / 4 \mathrm{~W}$
	Supply Protection Circuitry	Protected against transient voltages and reverse polarity
	Output Configuration	Outputs (K1 \& K2): four redundant (total of eight) safety relay (forced-guided) contacts - AgNi, $5 \mu \mathrm{~m}$ goldplated, plus 1 normally closed auxiliary monitor output - AgNi, $5 \mu \mathrm{~m}$ gold-plated. Low Current Rating: Caution: The $5 \mu \mathrm{~m}$ gold-plated contacts allow the switching of low current/low voltage. To preserve the gold plating on the contacts, the following max. values should not be exceeded at any time: Min. voltage: 1V ac/dc Max. voltage: 60V Min. current: $5 \mathrm{~mA} \mathrm{ac} / \mathrm{dc}$ Max. current: 300 mA Min. power: 5 mW (5 mVA) Max. power: 7 W (7 VA)
		High Current Rating: If higher loads must be switched through one or more of the contacts, the minimum and maximum values of the contact(s) changes to: Min. voltage: 15 V ac/dc Min. current: 30 mA ac/dc Min. power: 5 W (5 VA) Max. voltage: 250V ac/dc Max. current: 6 A Max. power: 200 W (1,500 VA) Mechanical life: 50,000,000 operations Electrical life: 150,000 operations (typical, @ 1,500 VA switched power, resistive load) 150,000 operations (typical, @ 200 W switched power, resistive load)
		Note: Transient suppression is recommended when switching inductive loads. Install suppressors across load. Never install suppressors across output contacts. Solid-State Monitor Outputs: - Two non-safety solid-state dc outputs - Output at Y32 monitors state of outputs - conducts (output high) when both K1 and K2 are energized - Output at Y35 conducts (output high) when internal power supply is OK - Output circuits require application of $+12-24 \mathrm{~V}$ dc $\pm 15 \%$ at terminal Y 31 ; dc common at Y 30 - Maximum switching current: 100 mA at $12-24 \mathrm{~V}$ dc - Both outputs are protected against short circuits
MODULES	Output Response Time	25 milliseconds typical
$\begin{aligned} & \text { INTERACEEE } \\ & \text { MODOULS } \end{aligned}$	Input Requirements	Input switch must have normally closed contacts each capable of switching 20 to 50 mA @ 12 to 30 V dc; and must be open ≥ 10 milliseconds for a valid stop command. Reset switch must have one normally open contact capable of switching 20 to $50 \mathrm{~mA} @ 12$ to $30 \mathrm{Vac} / \mathrm{dc}$.
	ON-Time Delay	80 milliseconds; time from the E-stop contacts to close (Auto Reset) or the reset button to open (Manual Reset) and the safety outputs to close.
	Status Indicators	3 green LED indicators: Power ON K1 energized K2 energized 1 Red LED indicator: Fault (internal power supply, ground fault, short across the input channels or other internal failures)
	Construction	Polycarbonate housing
	Environmental Rating	Rated NEMA 1; IEC IP20
	Mounting	Mounts to standard 35 mm DIN rail track. Safety Module must be installed inside an enclosure rated NEMA 3 (IEC IP54), or better.
	Vibration Resistance	10 to $55 \mathrm{~Hz} @ 0.35 \mathrm{~mm}$ displacement per IEC 68-2-6
	Operating Conditions	Temperature: 0° to $+50^{\circ} \mathrm{C}$ Relative humidity: 90% @ $+50^{\circ} \mathrm{C}$ (non-condensing)
	Certifications	For a list of certifications see page 237.
	Wiring Diagrams	1-Channel: WD050 (p. 277) 2-Channel: WD051 (p. 278)

SAFETY MODULES

ES－TN－1H．．Safety Module Specifications

Supply Voltage and Current	$24 \mathrm{~V} \mathrm{dc}, \pm 20 \%$ Power consumption：approx． 5 W
Supply Protection Circuitry	Protected against transient voltages and reverse polarity
Output Configuration	Outputs K1\＆K2：Two redundant（total of four）safety relay（forced－guided）contacts－AgNi，gold flashed one auxiliary normally closed contact－AgNi，gold flashed Outputs K3 \＆K4：Two redundant（total of four）delayed relay（forced－guided）contacts－AgNi，gold flashed one auxiliary normally closed contact－AgNi，gold flashed Contact ratings（all normally open and normally closed output contacts）： Max．voltage： 250 V ac or 250 V dc Max．current：4A ac or dc Min．current： $30 \mathrm{~mA} @ 24 \mathrm{~V}$ dc Max．power： 1000 VA， 100 W Mechanical life： $50,000,000$ operations Electrical life：100，000 at full resistive load NOTE：Transient suppression is recommended when switching inductive loads．Install suppressors across load．Never install suppressors across output contacts．
Output Response Time	K1 \＆K2： 50 milliseconds typical K3 \＆K4（ES－TN－1H1）： 0.25 second K3 \＆K4（ES－TN－1H2）： 0.5 second K3 \＆K4（ES－TN－1H3）： 1.0 second K3 \＆K4（ES－TN－1H4）： 2.0 seconds K3 \＆K4（ES－TN－1H5）： $0,0.5,1,2,4,6,8,10,15,20$ seconds K3 \＆K4（ES－TN－1H6）： $0,5,10,20,30,50,70,100,150,200$ seconds K3 \＆K4（ES－TN－1H7）： 4.0 seconds K3 \＆K4（ES－TN－1H8）： 6.0 seconds K3 \＆K4（ES－TN－1H9）： 8.0 seconds K3 \＆K4（ES－TN－1H10）： 10.0 seconds K3 \＆K4（ES－TN－1H11）： 15.0 seconds K3 \＆K4（ES－TN－1H12）： 20.0 seconds Delayed Output Timing Tolerance：Set time ± 100 milliseconds or $\pm 2 \%$ ，whichever is greater
Input Requirements	Input switch must have a normally closed contact capable of switching $20 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc}$ ． Reset switch must have one normally open contact capable of switching $20 \mathrm{~mA} @ 24 \mathrm{~V} \mathrm{dc}$ ． NOTE：Inputs must be voltage－free，dry contacts．
ON－Time Delay	≥ 100 milliseconds；time from the E－stop contacts to close（Auto Reset）or the Reset button to open（Manual Reset）and the safety outputs to close．
Status Indicators	6 green LED indicators： $\mathbf{1}$ red LED indicator： Power Monitor Fault E－Stop Out（K1 \＆K2 ON／OFF） Reset Timed－Out（K3 \＆K4 ON／OFF）
Construction	Polycarbonate housing
Environmental Rating	Rated NEMA 1；IEC IP40，Terminals IP20，max．terminal torque 0.8 Nm
Mounting	Mounts to standard 35 mm DIN rail track．Safety Module must be installed inside an enclosure rated NEMA 3 （IEC IP54），or better．
Vibration Resistance	10 to 55 Hz ＠ 0.35 mm displacement per IEC 68－2－6
Operating Conditions	Temperature： 0° to $+50^{\circ} \mathrm{C}$ Relative humidity： 90%＠$+50^{\circ} \mathrm{C}$（non－condensing）
Certifications	For a list of certifications see page 237.
Wiring Diagrams	2－Channel：WD052（p．279）

SIEMENS
Siemens Akjengeselkshaft
Automation and Drives
Factory Automation Sensors
Postrach 4848
ENBERG, GERMANY
hitp //WWW. siemens.ccm/smaticsenscrs

3RG7847-4BB Standard Evaluation Unit for Light Curtains in accordance with IEC-, EN 60204-1 Stop Category 0, depending on wiring up to cat. 4 (EN 954-1)

Connecting and Operating Instructions
About these Connecting and Operating Instructions
These operating instuctions contain information regarding proper equipment use. is ncluded in the scope of dsilvery. Safety precautions and wamings are designated by the symbol " 4 : Siamens AG is not llable for damage resuting from improper use of its equipmant. Familiarity with these instructions constitutes part of the knowledge required for proper use.

1. System Overview and Range of Applications
$a=$ Supply voltage on (LED green)
b = Relay K1 activated
$c=$ Relay K2 activated

- 1- or 2-channal Emargency-Stop wiring

Cross circuit recognition
Moritoring of external contactors (EDM) \boldsymbol{n} the push-button circult
Moritored start button
Automatic or manual start
2 relasse circuits, 1 normal closed contact as signal circuit
LED displays for Power, K1 and K2

- Operating voltage 24 V ACVDC
- Housing width 225 mm

Range of Applications

- Single-chennal Emargency-Stop wiring, acc. EN 954-1 bo Cat. 2

Two-channel Emergancy-Stop switching with cross circuit recogniltion(to Cat. 4,
EN 954-1)

- Sequential croutry for satety light barriers, Type 4, with relay or semi-conductor culputs

2. Safety Precautions Δ

- improper or ineppropriate use can resut in danger to the life and limbs of the ma-
crine operator or n damaga to property.
The relsvant reguations are valld for the use of 3RG7847-4BB Emergancy-Slop elays. The calsgory of Emargency-Stop funcion must te deberminsdunder consideration of the risk eveluation of the machinery. The responsible local sutthoriUss are availabla to answer questions related to salkty lssues.
3RG7847-4BBF is suted orly for uncontroled shut-dgwn (IEC 60204-1 Skp Categary 0).
- The mecharical and elactuical installation is to be perkormed by trained specia Ists.
- The voltage supply to the system must be switched ofrbelore and during installaton.
Contact mechanisms with poestive guided contacts must be mplementsd for the contact muituplication of the relarse circuits.

3. Function

Single-Channel Emergency-Stop Wiring with Manual Start
(Connection diagram Fig. 3)
Ater the supply voltage is eppled bA1 and A2, and if the Emergency-stop butk Is not pressed, une relays K1 and K2 pick up and bock when tie start button is pressed. The rebsese circuts 13-14 and 23-24 cloes and the signal circuit 31-32 opens. When the Emergsncy-Stop button is pressed, K1 and K2 go dead and drop out. The relasee circuits open, the signal circuit closes. With singe-charnel Emser-gency-Stop wiring, Category' 2 in accordance with EN 954-1 is attained. Earth sults in the push-button circuit are datected.

Two-Channel Emergency-Stop Wiring with Manual Start
Connection diagram Fig. 4)
with two-channal Emergency-Stop wiring, to Category 4 in accordance with EN $964-1$ is attained. Cross circuits between the push-button contacts and earth fauts h the push-button cricuit are dstected.

Safety Sequential Circuits for Type 4 Optoelectronic Protective Devices (for example light curtains/light grids 3RG7842)
It is possitide to cornect satety ightbariers, Type 4, with eilter relay outputs (Cannection diegram Fig. 6 manual reset, Fig. 9 aubmatic reset) or falsafe semiconductor cutputs and integrated cross crcuit monitoring (Cornection diagram Fig. 7 marual reset, Fig. 10 gutomatic reset). When calculating the satity distance, the 3RG7847-4BB's regression delay of 20 ms must also be taken into considaration.

Connection Examples / Anschlussbeispiele / Exemples de connexion

SIEMENS

Simultaneity monitoring
For the activation of the function, the first signel must be suppliad to terminal S12 S35 and the second to $\$ 22$. The maximum permissible time displacement is 50 ms . It the switching off of the signals takes plece in reversed order, stmulteneity moritcring will te dectivated. Simultaneity monitoring ks coly active with connec tion for sutomatic stat

Cross Circuit Monitoring
In case of a cross circut in the irputs S 12 and S 22 or a grounded short crcuit in the input S 12 , the culput relays K1 and K2 are switched off by means of an elec tronic fuse. The 3RG7847-4BB can resume operation approx. 28 atter the ceuse of the problam has teen eilminated

Start Button Monitoring During Manual Start
(see, for example, Fig. 3, Fig. 4, Fig. 6, Fig. 7)
in order to datect static emrors or the btocking of the start button, the button function is monicred ior signal changes. The rebses cocurs when uns bution is let go (1/0 synai changa). This funcion is daacivalad during sutomatic stat (see, for example, Fig. 9, 10).

External Contactor Monitoring (EDM) During Manual Start
(see Fig. 8)
So that the function of the extemal relays can be monitored, the normaly-ccoeed contacts of these relays are conneciad inb the start circuit S33-S34 in series.

External Contactor Monitoring (EDM) During Automatic Start
(see Fig. 11)
So that the function of the extemal relays can be monitored, the normaly-cioeed oontacts of these relays are connscted between $\mathrm{S} 12-\mathrm{S} 35$ in series.
4. Electrical Installation

Installation Requirements A

- The ganeral salsty precautions in Chapter 2 must be obesrved.

Encosure ratings: housing IP 40, terminels IP $20 \rightarrow$ must be built into an IP 54 housing!
The power supply and the connecions $13 ; 14 ; 23 ; 24 ; 31 ; 32$ must have a sale galvanic isolation from mains voltage.
Finger-sals in accordance with DIN VDE 0108, section 100

- In crdar b prevent the output contacts from welding togaster, an external fuse
- Maximum stripped isngth of the cornecting cables: 8 mm

5. Technical Data 3RG7847-4BB

Sdety calegory	to cal. 4 in ococrdonse wif ER954-1
Sisp calisgary	Sibp 0in scocrdane wifiec bex)4-1
Openting velage U_{8}	24 VACSOC, $15 N$ bi $+10 \%$
Resides riprla (DC) / Irequency (AC)	2,4 7SS $750-60$ FL
Pewer conaumplion	$2.1 \mathrm{~W}(\mathrm{AC}) 11.7 \mathrm{~W}(\mathrm{CC})$
Exdemd fuze proiection for supply cirsit	1 A delay-action
Ouput onitast	2 nombly yopencorriocts, 1 mormally-olosed conlast Agsince goll-realed
Cortoctomaling andorbrealing osposity in ococrdanee wih EN 62047-5-1	AC-15 Z $3 / 7 / 5 A^{\circ}$ $0 C-13$ $24 V / 3 A^{2}$ ${ }^{2} 10^{2}$ cperaiora, ${ }^{3} 95 \times 10^{4}$ opardisms
Hax permmenticurent parament pah	3 A
Exdemal contactive prolection per cur ent poh	5 A quik-asion or 3.15 a divjosction
Hax eperaicra pertous	3 30)0 apentivreh
Hechsonicalite ime	$1{ }^{10}$ cperaicos
Pick-p delay-manud start	70 ms
Pikkup delay (outom start)	to 233 ms
Regrescion dalay, reeporme ime	20 me
Hinimum slat-up ime S34, S35	80 ms
Hax led puks asceptanse	2 ms
Time windowlor ámulurextymentoring	50 ms
Ebsticric ine reochesarocovery ime	$2 \mathrm{~s} / 20$
	$24 \mathrm{VOC/20mA}$
Hax incoringaurent	320 mA T $=7,5 \mathrm{~ms}$
Adrietila input fre recisanoe	$<70 \Omega$
Openting ismperatise	$0^{2} \mathrm{to}+50^{\circ} \mathrm{C}$
Sisroge temperdur	-25^{5} to +7$)^{4} \mathrm{C}$
A Ovendlaga calogory Conlaminaion level	VCE O 10 por 11 2
hionferenos emietisn	El\| 5)(67-1, 2
hivererenoe immurity	EH508822
Endoaure raing	Houeing IP 40 , Terminala $1 P 20$
Cornecting calle cross sections	$1 \times 021025 \mathrm{~mm}^{2}$ fine wired or 1×0.25 to $2.5 \mathrm{~mm}^{2}$ fine wired with muli-core cable ends $2 \times 0.5 \mathrm{to} 1.5 \mathrm{~mm}^{2}$ fine wired whit twin muli-cocre cable ends $1 \times 0.2102 .5 \mathrm{~mm}^{2}$ aingle wired or $2 \times 0.2510 .0 \mathrm{~mm}^{2}$ ine wied wifhmuli vocre cable ends $2 \times 02101.5 \mathrm{~mm}^{2}$ fine wired $2 \times 02151.0 \mathrm{~mm}^{2}$ eingle wired
Cimensibre (height x with x depph)	$99 \times 22.5 \times 111.5 \mathrm{~mm}$
Weight	2009
Orderkumber	3 FGA 947.48 B

