IEC 61439 Parts 1 & 2 low-voltage switchgear and controlgear assemblies

Carrying out and documenting verification

- Introduction to verification tests
- Design verifications
- Routine verifications
- Documentation
Introduction to verifications
Terminology

Design verification:
Verification of specimens of a switchgear and controlgear assembly or parts of switchgear and controlgear assemblies to show the design meets the requirements of the relevant switchgear and controlgear assembly standard

Objective:
Verification of compliance with the general requirements of the IEC 61439-1 standard and the relevant IEC 61439–2….6 product standard

IEC 61439-1 §10
Design verifications are to be performed by the original manufacturer of the switchgear and controlgear assembly or their performance should be agreed upon.
Introduction to verification tests

Terminology

Design verification via:

Testing
- Tests on a specimen of a switchgear and controlgear assembly or parts of switchgear and controlgear assemblies

Comparison
- Structured comparison of the planned design or parts of a switchgear and controlgear assembly with a reference design, verification via testing

Assessment
- Design verification of set design rules or calculations based on a specimen or parts of a switchgear and controlgear assembly
Introduction to verification tests
Terminology

Routine verification
Verification process to which each switchgear and controlgear assembly is subjected during and/or after its manufacture to ensure it meets the requirements of the relevant switchgear and controlgear assembly standard.

Objective:
- To identify material and manufacturing defects
- Ensure operability

DIN EN 61439-1 §11
Routine verifications are to be performed by the manufacturer of the switchgear and controlgear assembly.
Design verifications
Verification options in accordance with IEC 61439-1 Annex D

- There are alternative processes for some design verifications.
- Alternative processes are treated as being equivalent.
- The original manufacturer makes the choice.

Design verification via:

- Testing
- Comparison
- Assessment

Annex D (informative)
Design verification

<table>
<thead>
<tr>
<th>No.</th>
<th>Characteristic to be verified</th>
<th>Verification options available</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Strength of material and parts</td>
<td>Testing</td>
</tr>
<tr>
<td>2.</td>
<td>Resilience to corrosion</td>
<td>Testing</td>
</tr>
<tr>
<td>3.</td>
<td>Properties of welding materials</td>
<td>Testing</td>
</tr>
<tr>
<td>4.</td>
<td>Thermal stability</td>
<td>Testing</td>
</tr>
<tr>
<td>5.</td>
<td>Resistance to electrical load and fire due to internal arcing</td>
<td>Testing</td>
</tr>
<tr>
<td>6.</td>
<td>Resistance to ultra-violet (UV) radiation</td>
<td>Testing</td>
</tr>
<tr>
<td>7.</td>
<td>Lifing</td>
<td>Testing</td>
</tr>
<tr>
<td>8.</td>
<td>Mechanical impact testing</td>
<td>Testing</td>
</tr>
<tr>
<td>9.</td>
<td>Degree of protection of enclosures</td>
<td>Testing</td>
</tr>
<tr>
<td>10.</td>
<td>Clearance</td>
<td>Testing</td>
</tr>
<tr>
<td>11.</td>
<td>Change characteristic</td>
<td>Testing</td>
</tr>
<tr>
<td>12.</td>
<td>Function against electric shocks and integrity of protective shielding</td>
<td>Testing</td>
</tr>
<tr>
<td>13.</td>
<td>Intentional contact of protective parts of enclosure and live parts of protective enclosure</td>
<td>Testing</td>
</tr>
<tr>
<td>14.</td>
<td>Short-circuit withstand voltage</td>
<td>Testing</td>
</tr>
<tr>
<td>15.</td>
<td>Incorporation of protection against overvoltage</td>
<td>Testing</td>
</tr>
<tr>
<td>16.</td>
<td>Internal electrical shocks and mechanical stresses</td>
<td>Testing</td>
</tr>
<tr>
<td>17.</td>
<td>Treatment for material conditions</td>
<td>Testing</td>
</tr>
<tr>
<td>18.</td>
<td>Electric properties</td>
<td>Testing</td>
</tr>
<tr>
<td>19.</td>
<td>Earthing frequency of electric voltage</td>
<td>Testing</td>
</tr>
<tr>
<td>20.</td>
<td>Insulator withstand voltage</td>
<td>Testing</td>
</tr>
<tr>
<td>21.</td>
<td>Temperature rise</td>
<td>Testing</td>
</tr>
<tr>
<td>22.</td>
<td>Short-circuit withstand voltage</td>
<td>Testing</td>
</tr>
<tr>
<td>23.</td>
<td>Overvoltage withstand voltage</td>
<td>Testing</td>
</tr>
</tbody>
</table>
Design verifications

Verification options in accordance with IEC 61439-1 Annex D

<table>
<thead>
<tr>
<th>Property requiring verification</th>
<th>Verification options</th>
<th>Exceptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength of materials</td>
<td>YES</td>
<td>1.) UV radiation / resistance to exceptional heat and fire</td>
</tr>
<tr>
<td>Degree of protection of the enclosure</td>
<td>YES</td>
<td>2.) Short-circuit withstand strength of the protective conductor</td>
</tr>
<tr>
<td>Clearances</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Creepage distances</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Protection against electric shock and integrity of protective circuits</td>
<td>YES</td>
<td>3.) Surge voltage strength</td>
</tr>
<tr>
<td>Incorporation of switching devices and components</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Internal electrical circuits and connections</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Terminals for external conductors</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Dielectric properties</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Temperature rise limits</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Short-circuit withstand strength</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic compatibility (EMC)</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Mechanical function</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

Testing
- YES
- NO

Comparison
- NO

Assessment
- NO
- YES

Exceptions:
1.) UV radiation / resistance to exceptional heat and fire
2.) Short-circuit withstand strength of the protective conductor
3.) Surge voltage strength
13 design verifications to be performed in accordance with IEC 61439-1

<table>
<thead>
<tr>
<th></th>
<th>Design</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Strength of materials and parts</td>
<td>2.1 Dielectric properties</td>
</tr>
<tr>
<td>1.2</td>
<td>Degree of protection of the enclosure</td>
<td>2.2 Verification of temperature rise</td>
</tr>
<tr>
<td>1.3</td>
<td>Clearances and creepage distances</td>
<td>2.3 Short-circuit withstand strength</td>
</tr>
<tr>
<td>1.4</td>
<td>Protection against electric shock and integrity of protective circuits</td>
<td>2.4 Electromagnetic compatibility</td>
</tr>
<tr>
<td>1.5</td>
<td>Incorporation of switching devices and components</td>
<td>2.5 Mechanical function</td>
</tr>
<tr>
<td>1.6</td>
<td>Internal electrical circuits and connections</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Terminals for external conductors</td>
<td></td>
</tr>
</tbody>
</table>
Verification objective:
Verification of the mechanical, electrical, and thermal suitability of materials and parts

Generally speaking:
If an enclosure in accordance with IEC 62208 is used, no further "strength of materials" tests will be required!

Note:
IEC 62208 – Empty enclosures for low-voltage switchgear and controlgear assemblies – General requirements

SIEMENS example:
IEC Alpha Box wall-mounted distribution board in accordance with IEC 62208
If no IEC 62208 enclosure is being used:

- **Corrosion resistance**: for ferrous metal enclosure
- **Properties of insulating materials**: thermal stability and resistance against exceptional heat
- **Resistance against ultraviolet (UV) radiation**: only for enclosure installed outdoors coated with insulating material
 Exception: This test does not need to be performed if the original manufacturer can provide data from the material supplier showing the material satisfies the requirements in the same type and thickness or thinner.
- **Lifting**: optional, if requested
- **Impact testing**: optional for power switchgear and controlgear assemblies in accordance with IEC 61439-2, if requested
- **Labels**: only for labels manufactured by molding, injection, engraving
1.2 Degree of protection of enclosure

Generally speaking:

The degree of protection (IP) does not need to be tested for enclosure already tested to IEC 62208!

Assessment:

- If an empty enclosure is used in accordance with IEC 62208, a verification in the form of an expert appraisal must be performed to ensure that all external changes made do not impair the degree of protection. In this case, no additional test is necessary.

Test:

- If no IEC 62208 enclosure is being used:
 - Performance of IEC 60529 testing (degree of protection offered by enclosure – IP Code)
Objective:
To ensure dielectric properties are appropriate for installations where contamination (creepages) and excess voltage levels (clearances) are an issue.

Generally speaking:
Clearances and creepage distances need to be measured in line with Annex F for IEC 61439-1!

Measurement of clearances and creepage distances – Table F.1 Annex F

<table>
<thead>
<tr>
<th>Pollution degree</th>
<th>Minimum values of width X of grooves in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,25</td>
</tr>
<tr>
<td>2</td>
<td>1,0</td>
</tr>
<tr>
<td>3</td>
<td>1,5</td>
</tr>
<tr>
<td>4</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Pollution degree 3 is the standard industry value!
Design verifications – design

1.4 Protection against electric shock and integrity of protective circuits

Objective: Effectiveness of protective function in the event of a fault

- For internal faults in the switchgear cabinet (1)
- For external faults within electrical circuits supplied by the switchgear cabinet (2)

(1) **Continuous connection of the protective conductor to the conductive parts in the switchgear cabinet (protection in the event of internal faults)**

- All conductive parts must be connected to the protective conductor.
- Max. resistance $R \leq 0.1\Omega$ of the electrical circuit
- Verification using a resistance meter (AC or DC) at a minimum of 10A; current flows from any component to the terminal for the external protective conductor.
(2) **Short-circuit withstand strength of the protective circuit (protection in the event of external faults)**

a) Verification via *comparison with a tested reference design* –

 I. Based on a checklist ([Table 13 IEC 61439-1](#))
 Satisfaction of Points 1-6 and 8-10

 II. Based on a calculation
 - Equivalent to "verification of the short-circuit withstand strength of busbar arrangements via comparison with a tested reference design"
 - Plus satisfaction of Points 6-10 in the checklist ([Table 13 IEC 61439-1](#))

b) Verification by *testing* short-circuit withstand strength to IEC 61439-1 paragraph 10.11.5.6 Testing the protective circuit

 Note: *There is no need to test electrical circuits which can be discounted in terms of short-circuit withstand strength – the relevant condition is described under Point 2.3 of the design verification section.*
Design verifications – design

1.5 Incorporation of switching devices and components

Generally speaking:
Verification is based on an assessment of constructional requirements (IEC 61439-1 Chapter 8). The manufacturer specifications need to be followed at the time of installation!

Electromagnetic compatibility:

a) Testing by inspecting the environment defined (A or B) with the incorporated switching devices and components which are relevant from an EMC perspective

b) Or, if necessary, confirmation via EMC testing
1.7 Terminals for external conductors – Chapter 8

- Indication of whether terminals for copper and/or aluminum
- Unless agreed otherwise, copper cross sections (min. and max. terminal sizes) must be devised as per Annex A (does not apply to circuits where Icn ≤ 1A and Udc ≤ 120V or Uac ≤ 50V).
- If aluminum terminals are being used, agreement needs to be reached on the type, size, and terminal technology.
- N-conductor at least 50% of the external conductor cross section, but no less than 16mm²
- N-conductor cross-section reduction only permitted from 16mm² of the phase conductor
- Marking of terminals for external PE conductors with ☐; not necessary if there is green/yellow marking
- Terminal cross section for external copper PE conductors as per Table 5

Objective: Testing by inspecting the terminals for external conductors (IEC 61439-1 Chapter 8)

Generally speaking:

a) Each circuit must be designed for the following kinds of excess voltage.

- Temporary excess voltages → tested based on power-frequency withstand voltage
- Transient excess voltages → tested based on surge voltage strength

b) All electrical switching devices and components must be connected.

Exception:

- Devices designed for a small test voltage
- Devices which induce a current flow (windings, measuring instruments, devices protecting against excess voltages, etc.)
2.1 Dielectric properties

b) Verification via expert appraisal:

- Clearances must be at least 1.5 times the Table 1 value.
- Rather than measuring clearances, the dimensions in the design drawings can be checked instead.
- Switching devices and components must be appropriate for the rated surge voltage strength U_{imp} defined.

Table 1 – Minimum clearances in air a (8.3.2)

<table>
<thead>
<tr>
<th>Rated Impulse withstand voltage U_{imp} (kV)</th>
<th>Minimum clearance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>4.0</td>
<td>3.0</td>
</tr>
<tr>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>12.0</td>
<td>14.0</td>
</tr>
</tbody>
</table>

a Based on inhomogeneous field conditions and pollution degree 3.
Design verification – performance
2.2 Verification of temperature rise – overview

3 Verification options: testing, comparison, assessment

a.) Testing
b.) Comparison
c.) Assessment

*) Restrictions

630 A

1,600 A

different \(\ln A \) for the switchgear and controlgear assembly

© Siemens Industry Inc. 2014. All rights reserved.
Design verification – performance

2.2 Verification of temperature rise – testing

Table 6, IEC 61439 – applies with a max. ambient temperature ≤ 35°C

<table>
<thead>
<tr>
<th>Parts of the switchgear and controlgear assembly</th>
<th>Temperature-rise limit [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-built switching devices and components</td>
<td>As per specifications</td>
</tr>
<tr>
<td>Terminals for incoming/outgoing insul. conductors</td>
<td>70 K (e.g. 35 + 70 = 105°C)</td>
</tr>
</tbody>
</table>
| Current bars, conductors, plug-in contacts, replaceable parts | Limited by:
 - Mechanical strength
 - Influence on adjacent switching devices and components
 - Limit temperature of insulating materials
 - Connected switching devices and components
 - Contact material for isolating contacts |
| Controls | Metal
 Insulating material | 15 K (e.g. 35 + 15 = 50°C)
 25 K (e.g. 35 + 25 = 60°C) |
| Exterior surfaces exposed to the touch | Metal
 Insulating material | 30 K (e.g. 35 + 30 = 65°C)
 40 K (e.g. 35 + 40 = 75°C) |
| Plug connections | Limited by incoming switching devices and components |

Within switchgear and controlgear assemblies, higher temperatures may occur at grounded metal parts if damage involving built-in switching devices and components can be ruled out.
2 calculation methods are allowed:

1. \(I_{nA} \leq 630 \, A \)
 Comparing the resulting power loss with the power loss associated with the enclosure

2. \(I_{nA} \leq 1600 \, A \)
 Calculating the power loss and radiation via the enclosure in accordance with IEC 60890 for switchgear and controlgear assemblies \(I_{nA} > 630 \, A \) to \(1600 \, A \) (maximum of 3 internal partitions)

Generally speaking:

- The rated current for the circuits may not exceed 80% of the conventional thermal rated currents for switchgear and electrical switching devices and components in free air within the circuit.
- All conductors must have a minimum cross section equivalent to 125% of the permissible rated current.
Design verification – performance
2.3 Verification of short-circuit withstand strength

Verification of rated currents for short circuits via
- Comparison with a reference construction (checklist or calculation)
- Testing

Verification of the short-circuit withstand strength of circuits is not required for:

a) Switchgear and controlgear assemblies with a rated short-term withstand current I_{cw} or a conditional rated short-circuit current I_{cc} with a root mean square value of 10 kA at the most;

b) Switchgear and controlgear assemblies or circuits of switchgear and controlgear assemblies, protected by current-limiting devices, whose peak let through current at the highest permissible uninfluenced short-circuit current at the in-feed terminals of the switchgear and controlgear assembly does not exceed 17 kA;

c) For auxiliary circuits: $U_N \geq 110$ V, $P_N \leq 10$ kVA and $u_k \geq 4$

$U_N < 110$ V, $P_N \leq 1.6$ kVA and $u_k \geq 4$%
Design verification – performance
2.3 Verification of short-circuit withstand strength is not required – case a.)

A rated short-term current tolerance I_{cw}
or conditional rated short-circuit current I_{cc}

$\leq 10 \text{ kA}$

Infeed

Field A

Outgoing feeders

Field B

$I_{cp} \leq 10\text{ kA}$
Design verification – performance
2.3 Verification of short-circuit withstand strength is not required – case b.)

Overcurrent protection devices:

I_{peak} \leq 17\text{kA}

at I_{cp} \geq 10\text{kA}
Verification tests in accordance with IEC 61439-1 & -2

Design verification – performance
2.3 Verification of short-circuit withstand strength is not required – case c.)

Auxiliary circuits:

- For $U_N \geq 110 \text{ V}$, $P_N \leq 10 \text{ kVA}$ and $u_k \geq 4\%$
- For $U_N < 110 \text{ V}$, $P_N \leq 1.6 \text{ kVA}$ and $u_k \geq 4\%$
Example with SIMARIS curves:

- NH fuse 3NA..., 200 A, \(I_{cu} = 120 \text{ kA} \)
- \(I_{cp} = 50 \text{ kA} \rightarrow I_{peak} = 16.2 \text{ kA} \)

\(I_{peak} \leq 17 \text{ kA} \)

→ No verification of the short-circuit withstand strength necessary!
2.3 Verification of short-circuit withstand strength

Example with SIMARIS curves:
- Circuit breaker 3RV1042, 50 A, $I_{cu} = 100$ kA
- $I_{cp} = 30$ kA \rightarrow $I_{peak} = 16.2$ kA

$\rightarrow I_{peak} \leq 17$ kA
\rightarrow No verification of the short-circuit withstand strength necessary!
Design verification – performance
2.3 Verification of short-circuit withstand strength – comparison

1. **Comparison based on a checklist**
 - Comparison using 10 questions in the IEC 61439 checklist
 - If an element in the checklist is not satisfied, then comparison based on calculations or testing

2. **Comparison using calculation (only for busbars!)**
 - Verification of the short-circuit withstand strength of busbar arrangements via comparison based on calculations (Annex P IEC 61439) and
 - Points 6, 8, 9, and 10 in the checklist also need to be satisfied

Notice: Comparison may only be based on a reference design which has been tested already!
2.4 Electromagnetic compatibility (EMC)

Generally speaking:
Verification is based on
- Assessment (of constructional requirements – Chapter 8)
- Tests as per Annex J

Verification based on **tests** is not required if an **Assessment** finds that:
- Switching devices and components are designed for the specified environment.
- Installation and wiring have respected manufacturer specifications.

In all other cases → testing as per Annex J.10.12

→ The requirements of EMCD 2004/104/EC for the control panel are thus fulfilled.
Design verification – performance
2.4 Electromagnetic compatibility (EMC)

- EMC withstand testing on finished switchgear and controlgear assemblies may **only be forgone** if the following conditions are met:
 - The installed equipment is manufactured for the respective environment in accordance with the applicable EMC standards
 - The installation and wiring of the components has been performed in accordance with the specifications of the relevant manufacturer (arranged with respect to mutual interference, shielded cable, grounding, etc.)

- **2 ambient conditions are considered**
 - **Environment A**: industrial networks / areas / devices (including strong sources of interference)
 → Equates to class A devices
 - **Environment B**: public networks such as residential areas, businesses, small industry. Strong sources of interference (arc welding machines) are not covered here
 → Equates to class B devices

The switchgear and controlgear assembly manufacturer must specify which ambient condition its switchgear and controlgear assembly is suited to.
Design verification – performance
2.4 Electromagnetic compatibility (EMC)

Interference immunity
Switchgear and controlgear assemblies without installed electronic equipment are considered immune to interference under normal operating conditions.
⇒ No verification necessary for this
⇒ Furthermore these devices do not usually have any specification on the environment to which they are best suited

Emitted interference
Switchgear and controlgear assemblies without installed electronic equipment only produce electromagnetic interference during switching operations. However, this is only for a few milliseconds. It is also a part of the normal electromagnetic environment.
⇒ No verification necessary for this
⇒ Furthermore these devices do not usually have any specification on the environment to which they are best suited
2.5 Mechanical function

Verification via testing

- There is no need to test previously type-tested arrangements or switchgear and controlgear assembly parts (e.g. slide-in circuit breakers).
- Testing of any mechanical locking devices
- The energy used before and after testing must remain practically unchanged.
- Parts to be tested need to undergo at least 200 activation cycles.

- The parts to be tested are:
 - Enclosure or partition walls
 - Hinges and locking devices for doors
 - Removable parts including encoding devices
 - Matching demands (see also 10.13)
 - The mechanical function of removable parts, including any encoding device
Routine verifications to be performed in accordance with IEC 61439-1

<table>
<thead>
<tr>
<th></th>
<th>Constructional requirement</th>
<th></th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Degree of protection of the enclosure</td>
<td>2.1</td>
<td>Dielectric properties</td>
</tr>
<tr>
<td>1.2</td>
<td>Clearances and creepage distances</td>
<td>2.2</td>
<td>Wiring, operating performance, and function</td>
</tr>
<tr>
<td>1.3</td>
<td>Protection against electric shock and integrity of protective circuits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>Incorporation of switching devices and components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>Internal electrical circuits and connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>Terminals for external conductors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>Mechanical function</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A test report must be created for the conducting of verifications as per DIN EN 61439-1.

Chapter 10.1

"The reference design, the number of switchgear and controlgear assemblies used for the verifications, or parts of these, the choice of verification methods, providing they are applicable, and the sequence of verifications are the responsibility of the original manufacturer.

The data used, the calculations, and the comparisons conducted when verifying the switchgear and controlgear assemblies are to be documented in a test report."
4.2.2 Electrical equipment in compliance with the IEC 60439 series [also applicable to the new IEC 61439 series]

The electrical equipment of the machine shall satisfy the safety requirements identified by the risk assessment of the machine. Depending upon the machine, its intended use and its electrical equipment, the designer may select parts of the electrical equipment of the machine that are in compliance with relevant parts of the IEC 60439 series (see also Annex F).

NOTE:
The IEC 60439 series specifies requirements for equipment covering a wide range of possible applications of low-voltage switchgear and controlgear assemblies.
Any questions?

Note / Exclusion of liability

The typical circuit diagrams and interpretations of the standard are not binding and do not claim to be complete regarding configuration, equipment or any other eventuality. They do not represent any client-specific solutions and are only intended to offer assistance for typical tasks.

Each person viewing this presentation is responsible for the correct operation of the products described. This presentation does not relieve you of your responsibility regarding safe handling when using, installing, operating, and maintaining the equipment.

By viewing this presentation you agree that Siemens cannot be made liable for possible damage beyond the above mentioned liability clause.

We reserve the right to make changes and revisions to this informational documentation without prior announcement.

When writing these guidelines, a lot of tables and texts were lifted straight from the relevant standards. All users of this documentation must always check whether the items quoted are still up to date or not. The final decision about the appropriateness of applying the applicable standards must be made by the user of this documentation.

The reproduction of this presentation and its distribution, utilization or the dissemination of its contents to third parties is not permitted.